Adding a Lot of Cohen Reals by Adding a Few

نویسنده

  • Moti Gitik
چکیده

A basic fact about Cohen reals is that adding λ Cohen reals cannot produce more than λ of Cohen reals. More precisely, if 〈rα|α < λ〉 are λ-Cohen generic reals over V , then in V [〈rα|α < λ〉] there is no λ -Cohen generic real over V . But if instead of dealing with one universe V we consider two, then the above may no longer be true. The purpose of this paper is to produce models V1 ⊆ V2 such that adding κ-many Cohen reals to V2 adds λ-Cohen to V1, for some κ < λ. We deal mainly with the case when V1, V2 have same cardinals and satisfy GCH. Let us state the principal results:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adding a Lot of Cohen Reals by Adding a Few Ii

We study pairs (V, V1), V ⊆ V1, of models of ZFC such that adding κ−many Cohen reals over V1 adds λ−many Cohen reals over V for some λ > κ.

متن کامل

Adding a Lot of Cohen Reals by Adding a Few I

In this paper we produce models V1 ⊆ V2 of set theory such that adding κ−many Cohen reals to V2 adds λ−many Cohen reals to V1, for some λ > κ. We deal mainly with the case when V1 and V2 have the same cardinals.

متن کامل

Adding a Lot of Random Reals by Adding a Few

We study pairs (V, V1) of models of ZFC such that adding κ-many random reals over V1 adds λ-many random reals over V , for some λ > κ.

متن کامل

ar X iv : m at h / 96 05 21 1 v 1 [ m at h . L O ] 1 4 M ay 1 99 6 COMBINATORIAL PRINCIPLES FROM ADDING COHEN REALS

We first formulate several " combinatorial principles " concerning κ × ω matrices of subsets of ω and prove that they are valid in the generic extension obtained by adding any number of Cohen reals to any ground model V , provided that the parameter κ is an ω-inaccessible regular cardinal in V. Then in section 4 we present a large number of applications of these principles, mainly to topology. ...

متن کامل

Two More Perfectly Normal Non-metrizable Manifolds

We show that there is a perfectly normal non-metrizable manifold if there is a Luzin subset of the real line, and that there is a countably compact perfectly normal non-metrizable manifold in any model of set-theory obtained by adding Cohen reals to a model of ZFC +♦.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995